Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D

نویسندگان

چکیده

This paper is concerned with the Cauchy problem of $2$D Zakharov-Kuznetsov equation. We prove bilinear estimates which imply local in time well-posedness Sobolev space $H^s({\mathbb{R}}^2)$ for $s > -1/4$, and these are optimal up to endpoint. utilize nonlinear version classical Loomis-Whitney inequality develop an almost orthogonal decomposition set resonant frequencies. As a corollary, we obtain global $L^2({\mathbb{R}}^2)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness for the 2d Modified Zakharov-kuznetsov Equation

We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.

متن کامل

Well-posedness results for the 3D Zakharov-Kuznetsov equation

We prove the local well-posedness of the three-dimensional Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces Hs(R3), s > 1, as well as in the Besov space B 2 (R 3). The proof is based on a sharp maximal function estimate in time-weighted spaces.

متن کامل

Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation

We show that the initial value problem associated to the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov equation ut −D α xux + uxyy = uux, (t, x, y) ∈ R , 1 ≤ α ≤ 2, is locally well-posed in the spaces Es, s > 2 α − 3 4 , endowed with the norm ‖f‖Es = ‖〈|ξ| α + μ〉f̂‖L2(R2). As a consequence, we get the global wellposedness in the energy space E1/2 as soon as α > 8 5 . The proof is based ...

متن کامل

The Cauchy Problem for the Euler-poisson System and Derivation of the Zakharov-kuznetsov Equation

We consider in this paper the rigorous justification of the ZakharovKuznetsov equation from the Euler-Poisson system for uniformly magnetized plasmas. We first provide a proof of the local well-posedness of the Cauchy problem for the aforementioned system in dimensions two and three. Then we prove that the long-wave small-amplitude limit is described by the ZakharovKuznetsov equation. This is d...

متن کامل

Global Well-posedness of the Cauchy Problem of a Higher-order Schrödinger Equation

We apply the I-method to prove that the Cauchy problem of a higher-order Schrödinger equation is globally well-posed in the Sobolev space Hs(R) with s > 6/7.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2021

ISSN: ['0294-1449', '1873-1430']

DOI: https://doi.org/10.1016/j.anihpc.2020.08.003